IDH inhibitors in mutant IDH AML

Stephane de BOTTON Institut Gustave Roussy FRANCE

Disclosures of Stephane De BOTTON

Name of Company	Research support	Employee	Consultant	Stockholder	Speaker's Bureau	Advisory Board	Other	
Auron	Х					Х		
FORMA	Х					х		
PFIZER SYROS ASTELLAS ABBVIE JAZZ BMS SERVIER REMIX FOGHORN JANSSEN	x x					X X X X X X X X X	X	

IDH1/2 mutant proteins are good targets

 Play a substantial role in AML pathophysiology and *IDH1/2* mutations are considered as early events in leukemogenesis

• Frequent events # 20 % AML

• They are druggable

Concurrent gene mutations in patients with IDH-mutated AML

Duchmann M et al; Blood (2021) 137 (20): 2827–2837.

IDH1/2 mutants produce D-2-HG

2-HG Occupies the Same Space as $\alpha\text{-}KG$ Does in the Active Site

INHIBITION OF a-KG-dependent dioxygenases (control of demethylases)

IDH1 and IDH2 Mutations Alter Histone and DNA Methylation

Block of differentiation

Wei Xu et al Cancer cell 2011

January 15-17, 2024 BOLOGNA, ROYAL HOTEL CARLTON

IDH-mutated R/R AML

IDH1

IDH2

Enasidenib

Tibsovo Olutasidenib

FLT3 inhibitor if FLT3 positive

IDH inhibitors are FDA approved in R/R AML High response rate

Table 2. Investigator-reported efficacy outcomes and survival in patients with R/R AML

	R/R AML			
	Enasidenib, 100 mg/d (n = 214)	All doses (N = 280)		
ORR, % (n/N) [95% CI]*	38.8 (83/214) [32.2%-45.7%]	39.6 (111/280) [33.9%-45.6%]		
CR + CRi/CRp rate, % (n/N)	29.0 (62/214)	27.9 (78/280)		
Best response CR, n (%) [CR rate 95% CI] CR/CRp, n (%) PR, n (%) MLFS, n (%) SD, n (%)† PD, n (%)‡ Not evaluable, n (%)	42 (19.6) [14.5-25.6] 20 (9.3) 9 (4.2) 12 (5.6) 98 (45.8) 19 (8.9) 3 (1.4)	53 (18.9) [14.5-24.0] 25 (8.9) 17 (6.1) 16 (5.7) 122 (43.6) 26 (9.3) 4 (1.4)		
Time to first response, median (range), mo	1.9 (0.5-9.4)	1.9 (0.5-9.4)		
Duration of response, median (95% CI), mo	5.6 (3.8-7.4)	5.6 (4.6-6.5)		
Time to best response, median (range), mo	3.7 (0.6-14.7)	3.7 (0.5-14.7)		
Time to CR, median (range), mo	3.7 (0.7-14.7)	3.8 (0.5-14.7)		
OS, median (95% CI), mo	8.8 (7.7-9.6)	8.8 (7.8-9.9)		
EFS, median (95% Cl), mo§	4.7 (3.7-5.6)	4.6 (3.7-5.6)		

*Responses were evaluated by study investigators and classified according to the 2003 revised IWG criteria for AML¹⁶ ORR consists of CR, CRi, CRp, PR, and MLFS. (SD was defined as failure to achieve a response but not meeting criteria for disease progression for >8 consecutive weeks.

for patients with 5% to 66% bone marrow blasts at nadir, a >50% increase in bone marrow blast court percentage from the nadir with percentage \ge 20%, and for patients with \ge 67% bone marrow blasts at nadir, a doubling of the nadir absolute peripheral blood blast count with a final absolute peripheral blood blast count >10 × 10% L 50% of first double countereit response to date of relapse, desse progression, or death.

Table 3. Investigator-Reported Hematologic Response, Time to Response, and Response Duration in Patients Receiving 500 mg of Ivosidenib Daily.*

Response	Primary Efficacy Population (N=125)	Relapsed or Refractory AML (N = 179)	Untreated AML (N=34)†	MDS (N=12);
CR or CRh				NA
No. of patients	38	54	12	NA
% (95% CI)	30.4 (22.5–39.3)	30.2 (23.5–37.5)	35.3 (19.7–53.5)	NA
Median time to CR or CRh (range) — mo	2.7 (0.9-5.6)	2.0 (0.9-5.6)	2.8 (1.9-2.9)	NA
Median duration of CR or CRh (95% CI) — mo	8.2 (5.5–12.0)	6.5 (5.5-11.1)	NE (1.0-NE)	NA
CR				
No. of patients	27	39	7	5
% (95% CI)	21.6 (14.7–29.8)	21.8 (16.0-28.6)	20.6 (8.7-37.9)	41.7 (15.2–72.3)
Median time to CR (range) — mo	2.8 (0.9-8.3)	2.8 (0.9-8.3)	2.8 (1.9-3.7)	1.9 (1.0-5.6)
Median duration of CR (95% CI) — mo	9.3 (5.6-18.3)	9.3 (5.6-12.5)	NE (5.6–NE)	NE (2.8-NE)
Overall response				
No. of patients	52	70	19	11
% (95% CI)	41.6 (32.9-50.8)	39.1 (31.9-46.7)	55.9 (37.9-72.8)	91.7 (61.5-99.8)
Median time to first response (range) — mo§	1.9 (0.8-4.7)	1.9 (0.8-4.7)	1.9 (0.9–2.9)	1.6 (1.0-2.8)
Median duration of response (95% CI) — mo	6.5 (4.6-9.3)	6.5 (4.6-9.3)	9.2 (1.9–NE)	NE (2.3-NE)
Best response — no. (%)				
CR	27 (21.6)	39 (21.8)	7 (20.6)	5 (41.7)
CRi or CRp	16 (12.8)	21 (11.7)	7 (20.6)	0
Partial remission	0	0	1 (2.9)	0
MLFS or bone marrow CR¶	9 (7.2)	10 (5.6)	4 (11.8)	6 (50.0)
Stable disease	44 (35.2)	69 (38.5)	10 (29.4)	0
Progressive disease	13 (10.4)	15 (8.4)	3 (8.8)	1 (8.3)
Could not be evaluated	0	0	0	0
Not assessed	16 (12.8)	25 (14.0)	2 (5.9)	0

Courtney DiNARDO N Engl J Med 2018; 378:2386-2398

IDH inhibitors are FDA approved in R/R AML High response rate

de Botton S, et al., Blood Adv, 2023,

IDH inhibitors are FDA approved in R/R AML Durable responses

Eytan M. Stein et al. Blood 2017;130:722-731

Courtney DiNARDO N Engl J Med 2018; 378:2386-2398

IDH inhibitors are FDA approved in R/R AML Durable responses

median OS 11.6 months

de Botton S, et al., Blood Adv, 2023,

IDH inhibitors are FDA approved in R/R AML SAFE

Supplementary Table S3. Treatment-related adverse events (any grade) occurring in ≥5% of all patients.

	Relapsed / re		
	Enasidenib 100 mg/day (n=214)	All doses (n=280)	All patients (N=345)
Preferred term		n (%)	'
Hyperbilirubinemia*	71 (33)	97 (40)	139 (40)
Nausea	59 (28)	76 (27)	95 (28)
Decreased appetite	41 (19)	50 (18)	61 (18)
Vomiting	37 (17)	46 (16)	52 (15)
Diarrhea	33 (15)	45 (16)	52 (15)
Fatigue	31 (14)	41 (15)	51 (15)
IDH differentiation syndrome	27 (13)	33 (12)	38 (11)
Dysgeusia	22 (10)	26 (9)	34 (10)
AST increased	20 (9)	24 (9)	29 (8)
Dyspnea	20 (9)	21 (8)	27 (8)
Leukocytosis	16 (8)	22 (8)	25 (7)
Anemia	14 (7)	18 (6)	25 (7)
ALT increased	15 (7)	18 (6)	21 (6)
Rash	13 (6)	14 (5)	20 (6)
Hyperuricemia	12 (6)	14 (5)	18 (5)
*Contains multiple preferred terms un system related investigations, signs a	nder the Standardize	ed MedDRA Query	(SMQ) "Biliary

ALT, alanine aminotransferase; AST, aspartate aminotransferase; IDH, isocitrate dehydrogenase

Table S4. Most common adverse events (≥5%) considered to be related to ivosidenib by the

investigator.

Event, n (%)	Overall population, N=258	
	Any grade	Grade ≥3
Any treatment-related adverse event	163 (63.2)	66 (25.6)
Nausea	37 (14.3)	2 (0.8)
Diarrhea	32 (12.4)	3 (1.2)
Electrocardiogram QT prolongation	32 (12.4)	18 (7.0)
Fatigue	32 (12.4)	2 (0.8)
IDH differentiation syndrome	27 (10.5)	12 (4.7)
Decreased appetite	25 (9.7)	2 (0.8)
Leukocytosis	18 (7.0)	3 (1.2)
Vomiting	18 (7.0)	1 (0.4)

Eytan M. Stein et al. Blood 2019;133:676-687

IDH inhibitors are FDA approved in R/R AML SAFE

Differentiation	QTc Prolongation	Liver Abnormalities	Lat Abno	ooratory rmalities ^b :	
All Grades: 14% (21 pts)	All Grades: 8% (13 pts)	TEAEs ^a : All Grades: 21% (32 pts)	N=153, n (%)	All Grades	Grade ≥ 3
Grades 3/4:	Grades 3/4 : < 1% (1 pt. Grade 3)	Grades 3/4:	AST increased	65 (42)	12 (8)
• 3 pts discontinued	No events led to	 10% (16 pts)/2% (3 pts) 7 pts (Grade 3/4) discontinued 	ALT increased	63 (41)	19 (12)
treatment	discontinuation	treatment; 4 pts after	ALP increased	60 (39)	9 (6)
 18 pts had concomitant leukocytosis 		 25 pts had no dose modification or continued after a rechallenge 	Bilirubin increased	42 (27)	4 (3)
		No Hy's law cases	^b Based on worst p values	ost-baseline I	aboratory
		^a Summary of relevant PTs from Hepatol Disorders and Investigations SOCs	billiary		

ALP, alkaline phosphate; ALT, alanine aminotransferase; AST, aspartate aminotransferase, PT, preferred term; SOC, system organ class

Differentiation Syndrome Associated With Enasidenib # 12% of the R/R AML

AT Fathi et al. JAMA Oncol. 2018 Jan 18.

Table 1. Frequency of Signs and Symptoms Consistent With IDH-DS^a

Sign or Symptom	Patients With IDH-DS, No. (%) (n = 33) ^b
Dyspnea	28 (85)
Unexplained fever (body temperature of 38.0°C for 2 d)	26 (79)
Pulmonary infiltrates	24 (73)
Нурохіа	19 (58)
Acute kidney injury (CTCAE grade ≥2)	14 (42)
Pleural effusion	14 (42)
Bone pain or arthralgia	9 (27)
Lymphadenopathy	8 (24)
Rash	8 (24)
Disseminated intravascular coagulopathy	7 (21)
Edema or weight gain of >5 kg from screening	7 (21)
Pericardial effusion	5 (15)

Abbreviations: CTCAE, Common Terminology Criteria for Adverse Events¹⁴; IDH-DS, isocitrate dehydrogenase differentiation syndrome.

^a Signs and symptoms included in this table are based on retrospective differentiation syndrome review committee review of clinical records.

^b Patients may have had multiple symptoms.

Table 2. Response Among Patients With and Without IDH-DS

Patient Response	IDH-DS, No. (%) (n = 33) ^a	No IDH-DS, No. (%) (n = 248)
Overall response ^b	15 (45.5)	93 (37.5)
CR	6 (18.2)	49 (19.8)
CRi/CRp	6 (18.2)	16 (6.5)
PR	2 (6.1)	14 (5.7)
MLFS	1 (3.0)	14 (5.7)
Stable disease ^c	16 (48.5)	121 (48.8)
Disease progression	1 (3.0)	14 (5.7)

de Botton S. et al. Blood 2022

IDHENTIFY: study design and overall (ITT) results

KM-estimated survival outcomes

• OS was likely confounded by early Tx discontinuation and use of subsequent therapy during OS follow-up, which were more frequent in the CCR arm¹

IDHENTIFY: study design and overall (mITT) results

Δ, difference; CCR, conventional care regimens; CI, confidence interval; ENA, enasidenib; mITT, modified intentionto-treat; OS, overall survival.

de Botton S, et al. Blood 2022

AG221-AML-004

New Drugs in Hematology

January 15-17, 2024 BOLOGNA, ROYAL HOTEL CARLTON

R172 subgroup	summa	ary	ORR	RBC-TI	Any HI
 Baseline mutations: Median 4 (range, 2-8) get Most common co-mutation RUNX1 DNMT3A and TP53 preferent mutated with R172 (vs F 	ene mutatic ions: <i>DNMT</i> . erentially co R140)	ons 3A, 0-			
			ENA: 51%	ENA: 64%	ENA: 58%
EN	A CCR		CCR: 7%	CCR: 18%	CCR: 9 %
(n=4	3) (n=45)	-	HR [95% CI],	ENA vs CCR	
OS, median, mo 14.	6 7.8		0.59 [0.35-0.98]	<i>P</i> = 0.039	
EFS, median, 10.	1 2.7		0.47 [0.26-0.82]	$P = \frac{1}{17} 0.007$	
TTF, median, 7.5	5 2.2		0.30 [0.19-0.49]	P < 0.001	
mo		0.5	Favors ENA	Favors CCR	

AML, acute myeloid leukemia; CCR, conventional care regimen; ENA, enasidenib; EFS, event-free survival; HI, hematologic improvement; HR, hazard ration; mo, month; ORR, overall response rate; OS, overall survival; TTF, time to treatment failure.

Α

IDH inhibitors can suppress 2-HG

Figure S7. 2-HG levels at (A) baseline and (B) cycle 2 day 1 by best overall response in patients with

R/R AML whose starting dose was 500 mg daily.

Blood Adv. 2020 May 12;4(9):1894-1905

2-HG reductions were significantly greater in patients achieving CR

2-HG, 2-hydroxyglutarate; CR, complete remission; CRp/CRi, CR with incomplete platelet/hematologic recovery; MLFS, morphologic leukemia-free state; PR, partial remission; PD, progressive disease; SD, stable disease

ENA

Primary resistance to IDH inhibitors

Number of associated mutations

Type of associated mutations

Secondary resistance to IDH inhibitors

- Clonal evolution/selection leading to IDH1/2m
 IDH related = 35 % (2HG addiction) independence
- Signaling pathways 35%
- Differentiation 31%
- Chromatin 31 %
- Epigenetics 8%

Quek et al Nature Medecine 2018; Intlekofer et al, Nature 2018

Sung Choe Blood Adv 2020 May 12;4(9):1894-1905

- Gain /selection IDH1 or 2
- Second site mutation
- 2-HG +++

Combinations are required

To improve results of IDH inhibition alone

- Almost all patients relapsed
- To prevent/delay relapses
 IDH independent
- To improve depth of response

To ameliorate results of available therapies

- HMA are not very efficient (IDH1)
- To decrease relapse rate
- To delay relapses

IDH1

Patients > 75 y and/or not eligible for intensive chemotherapy (Approved options)

 \bullet

Tibsovo + 5-AZA

Venetoclax + 5-AZA

IDH2

• Tibsovo alone

• Venetoclax + 5-AZA

5-AZA vs Venetoclax+ 5-AZA

Figure 2.

A, Remission rates in patients with *IDH1/2* mutations and *IDH1/2* wild-type by treatment groups. **B**, Remission rates in patients with *IDH1* mutations in the venetoclax and azacitidine group. **C**, Remission rates in patients with *IDH2* mutations in the venetoclax and azacitidine group.

5-AZA vs Venetoclax+ 5-AZA

Impact of Venetoclax and Azacitidine in Treatment-Naïve Patients with Acute Myeloid Leukemia and *IDH1/2* Mutations

Daniel A. Pollyea¹, Courtney D. DiNardo², Martha L. Areliano³, Arnaud Pigneux⁴, Walter Fiedler⁵, Marina Konopleva², David A. Rizzien⁶, B. Douglas Smith⁷, Atsushi Shinagawa⁶, Roberto M. Lemoli²³¹⁰, Monique Dail¹¹, Yinghui Duah², Brenda Chyla¹², Jalaja Potluri¹², Catherine L. Miller¹², and Hagop M. Kantarijan²

5-AZA + IVO At a median follow-up (28.6 months)

De Botton et al. ASCO 2023. Abstract #7012

Enasidenib + 5-AZA in Patients With Newly Diagnosed AML

	Enasidenib plus azacitidine (n=68)	Azacitidine only (n=33)	p value
Overall response*	50 (74%; 95% Cl 61–84)	12 (36%; 95% Cl 20–55)	0.0003
Complete remission	37 (54%; 95% Cl 42–67)	4 (12%; 95% Cl 3–28)	<0.0001
Complete remission or complete remission with partial haematological recovery	39 (57%)	6 (18%)	0.0002
Complete remission with incomplete blood count or platelet recovery	6 (9%)	6 (18%)	
Partial remission	4 (6%)	2 (6%)	
Morphological leukaemia-free state	3 (4%)	0	
Stable disease	13 (19%)	16 (48%)	
Disease progression	1(1%)	1 (3%)	
Not evaluable or missing data	4 (6%)	4 (12%)	
Time to first response, months	1.9 (1.1–3.9)	3.6 (1.9-4.4)	
Time to complete remission, months	5.4 (3.8–7.6)	4.4 (3.8–5.6)	
Duration of response, months	24∙1 (95% CI 10∙0–NR)	9·9 (95% Cl 5·5–13·6)	
Duration of complete remission, months	NR (95% CI 7·7–NR)	12·7 (95% Cl 11·7–NR)	

Data are n (%; 95% CI), n (%), median (IQR), or median (95% CI). Data cutoff Aug 20, 2019. NR=not reached. *Overall response defined as proportion of patients with complete remission, complete remission with incomplete blood count or platelet recovery, partial remission, or morphological leukaemia-free state.

*ORR = (CR, Cri/CRp, PR, MLFS)

Table 2: Haematological responses in the randomised phase 2 study portion

DiNardo, et al. Lancet Oncol. 2021 Nov;22(11):1597-1608. doi: 10.1016/S1470-2045(21)00494-0.

EFS

Enasidenib + AZA in Patients With Newly Diagnosed AML

0S

DiNardo, et al. Lancet Oncol. 2021 Nov;22(11):1597-1608. doi: 10.1016/S1470-2045(21)00494-0.

ivosidenib with venetoclax +/- azacitidine in IDH1-mutated

•

enasidenib with venetoclax +/- azacitidine in IDH1-mutated

 Table 2.
 Outcomes in newly diagnosed and relapsed/refractory patients with *IDH2* mutant acute myeloid leukemia.

Response	Newly diagnosed <i>n</i> = 7	Relapsed/ refractory <i>n</i> = 19
CRc	7 (100)	11 (58)
CR	5 (72)	5 (26)
CRi	2 (28)	6 (32)
MRD negativity by FCM	7/7 (100)	2/9 (22)
Not evaluable	0	1 (5)
No response	0	7 (37)
Median number of cycles given (range)	3 (1-8)	4 (1–17)
Median time to best response, months (range)	1.6 (1.0–4.2)	1.8 (0.8–5.4)

CRc -composite complete remission rate = CR + CRi, CR- complete remission, CRi -CR with incomplete hematologic recovery, MRD- measurable residual disease, FCM- flowcytometry

All results expressed as No. (%) or median [Minimum-maximum], unless specified.

A PHASE II STUDY OF ENASIDENIB WITH VENETOCLAX +/- AZACITIDINE IN IDH2-MUTATED MYELOID MALIGNANCIES Venugopal S et al, *Blood Cancer Journal* volume 12, Article number: 10 (2022)

CRi 24 % ORR 47 %

Eytan M. Stein et al ; A Completed Phase 2/1b Sub-Study of the Beat AML Master Trial, Blood, 2020,

OS = 8.9 months American Society of Hematology

Helping hematologists conquer blood diseases worldwide

Response to 5-AZA + VEN in R/R AML

IDH1 (n=9) CR/CRi = 56 % ORR = 67 %

IDH2 (n=15) CR/Cri = 56 % ORR = 67 %

Figure 3. Molecular predictors of response. Oncoprint showing mutational and cytogenetic characteristics at diagnosis for 86 patients treated in the RR setting. Light gray boxes represent missing data. Patients are grouped by best response, annotated with colored bars above the grid. The type of backbone used in combination with venetoclax, the number of previous lines of therapy, and previous exposure to HMA are also annotated at the top. The filled bar plot on the right shows the number of patients with each mutation who achieved CR, CRi, and MLFS, with percentages to the right. Asterisks indicate genes with *P* < .05 for either percent CR/CRi MRD negative, CR/CRi, or ORR.

5-AZA + VEN AFTER IDH inhibitor

5-AZA + VEN **BEFORE** IDH inhibitor

Bewersdorf Leukemia Lymphoma 2022

Prognostic significance of concurrent gene mutations in intensively treated patients

Combination studies

Study	п	Age, y (range)	Median OS, mo	ORR/CR/CR + CRi (%)	Median FU, mo
Stein et al ⁴¹ 3+7 and enasidenib	93	63 (27-77)	25.6	86.8/55/74 ^a	14.5
Stein et al ⁴¹ 3+7 and ivosidenib	60	62.5 (24-76)	NR (78% at 12 mo)	86.7/68/77 ^a	9.3

Stein et al; Blood (2021) 137 (13): 1792–1803. https://doi.org/10.1182/blood.2020007233

CONCLUSIONS

Results of combination therapies are very encouraging

Favourable safety profile synergistic effects inducing high response rate Translates into a significant improvement in EFS and in OS

CONCLUSIONS

Results of combination therapies are very encouraging

WHEN /HOW incorporate Bcl2 inhibitors ?